

University Libraries University of Nevada, Las Vegas

University of Nevada, Las Vegas University Libraries

Undergraduate Research Opportunities Program Undergraduate Research Opportunities Program (UROP) (UROP) 2011

Aug 9th, 10:15 AM - 12:00 PM

Identification of nitrifying bacteria contained in a commercial inoculant using molecular biology techniques

Anthony Harrington University of Nevada, Las Vegas

John Perry University of Nevada, Las Vegas

Penny S. Amy University of Nevada, Las Vegas, penny.amy@unlv.edu

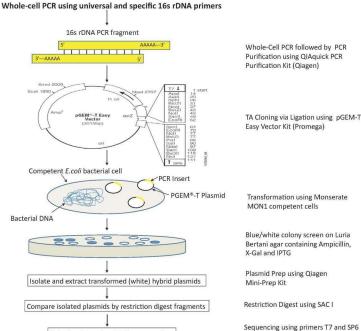
Repository Citation

Anthony Harrington, John Perry, and Penny S. Amy, "Identification of nitrifying bacteria contained in a commercial inoculant using molecular biology techniques" (August 9, 2011). *Undergraduate Research Opportunities Program (UROP)*. Paper 15. http://digitalcommons.library.unlv.edu/cs_urop/2011/aug9/15

This Event is brought to you for free and open access by the Undergraduate Research at University Libraries. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of University Libraries. For more information, please contact marianne.buehler@unlv.edu.

Identification of Nitrifying Bacteria Contained in a Commercial Inoculant Using Molecular Biology Techniques

By Anthony Harrington, John Perry, and Penny S. Amy University of Nevada, Las Vegas-School of Life Sciences



Introduction

Nitrifying bacteria play an important role in the aquatic and terrestrial nitrogen cycle. Nitrification, one of the processes of the nitrogen cycle, refers to the oxidation of ammonia to nitrate. This process requires two types of chemoautotrophic bacteria: ammonia-oxidizing bacteria (AOB) and nitriteoxidizing bacteria (NOB). These bacteria are essential as they supply nitrate for the growth of plants and aquatic organisms.

Current applications of nitrifiers include: inoculants for aquaria, biofertilizers, and nitrogen removal in wastewater treatment plants. Previous studies have shown that Fritz-zyme Turbostart 700, a commercial freshwater inoculant, has been successfully used in a semi-hydroponic system, i.e., zeoponics. In our laboratory, preliminary data have shown that Fritz-zyme contains more than the specific nitrifying bacteria. In order to determine an optimal consortium for zeoponics, it is necessary that we know exactly what bacteria are present. Using 16s rDNA universal primers and pGEM®-T Easy Vector Cloning Kit (Promega), we amplified the 16s rDNA genes from Fritz-zyme and cloned them into the pGEM®-T Easy E. coli vector plasmid. The cloned plasmids were transformed into competent E. coli cells and sequenced to identify the bacteria present in each sample. In this study, we determined whether the current enrichment techniques being used are sufficient to eliminate the heterotrophic and spore-forming bacteria present in Fritz-zyme.

Materials and Methods

at UNLV Genomics Center

Submit unique plasmids for sequencing

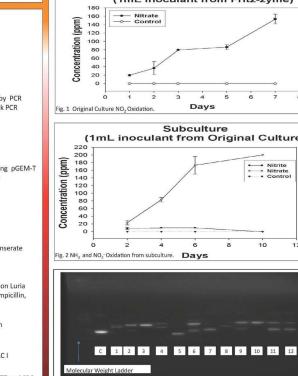
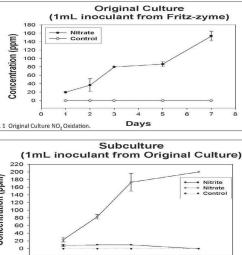



Fig. 3 Agarose Gel showing Cut Hybrid Plasmids using SAC I Restriction Endonuclease

Materials and Methods (continued)

Primer	5' → 3'	Specificity
27f	AGAGTTTGATCCTGGCTCAG	Bacterial 16s rDNA gene
1492r	ACGGCTACCTTGTTACGACTT	Bacterial 16s rDNA gene
EUB338f	ACTCCTACGGGAGGCAGC	Bacterial 16s rDNA gene
Nso1225r	CGCCAATTGTATTACGTGTGA	AOB 16s rDNA gene
NIT3r	CCTGTGCTCCATGCTCCG	Nitrobacter 16s rDNA gene
Ntspa685r	CGGGAATTCCGCGCTC	Nitrospira 16s rDNA gene

Results

e e e

12

Nitrosomonas sp. ENI-11 gene for 16S rRNA partial sequence 48 - Pseudomonas argentinensis strain PA01_16S ribosomal_RNA_gene_complete sequence

- Pseudomonas koreensis gene_for_16S_rRNA_partial_sequence_strain: HG-K3
- R Pseudomonas fulva strain CTSP6 16S ribosomal RNA gene partial sequence
- Nitrobacter_winogradskyi partial_16S_rRNA_gene_strain_R1.30
- Uncultured bacterium gene for 165 ribosomal RNA_partial sequence clone: N31 Nitrosomonas europaea strain_ATCC 25978 165 ribosomal_RNA gene partial sequence
- Niabella ginsengisoli strain GR10-1 16S ribosomal RNA gene partial sequence
- -Nitrobacter alkalicus strain AN2 16S ribosomal RNA partial sequence
- Wiabelia_aurantiaca_strain_R2A15-11_16S_ribosomal_RNA_gene_partial_sequence
- Uncultured Chitinophagaceae bacterium clone G1-20 16S ribosomal RNA gene partial sequence - Pseudomonas sp. An1 partial 16S rRNA gene isolate An1

Fig. 4 Phylogenetic tree of cloned inserts created in MEGA 5.0 using results from BLASTn from NCBI Database. Contigs were created in DNA Baser Software. Values next to nodes represent percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates). Blue boxes represent Ammonia-oxidizing bacteria. Red boxes represent Nitrite-oxidizing bacteria

Conclusion

1. We confirmed the activity of nitrifying bacteria based on NH₂ and NO₃⁻ oxidation using test strips.

2. Sequencing data showed the presence of Ammonia-oxidizing and Nitrite-Oxidizing bacteria in Fritz-zyme.

3. Sequencing data also showed the presence of non-nitrifying bacteria from the genera Pseudomonas and Niabella, which could indicate the presence of denitrifying bacteria as well as nitrifying bacteria.

Future Research

•Measure oxidation of NH₃ and NO₂⁻ using Ion-Selective Electrodes to gain a more accurate measurement of oxidation.

•Find Primers capable of amplifying 16s rDNA from sub-culture samples. Possible candidates include EUB338f and EUB338r along with specific 16s rDNA primers.

•Determine if sub-culturing techniques are suitable for isolating pure nitrifiers.

References

urrell, P.C., Phalen, C.M., and Hovanec, T.A. 2001. Identification of Bacteria Responsible for nmonia Oxidation in Freshwater Aquaria. Appl. Environ. Microbiol. 67: 5791-5800

Liesack, W., Weyland, H., and Stackebrandt, E. 1991. Potential Risks of Gene Amplification by PCR as Determined by 16s rDNA of a Mixed-Culture of Strict Barophilic Bacteria. Microb Ecol. 21:

Regan, J.M., Harrington, G.W., and Noguera, D.R. 2002. Ammonia- and Nitrite-Oxidizing Bacterial mmunities in a Pilot-Scale Chloraminated Drinking Water Distribution System. Appl. Environ. Aicrobiol. 68: 73-81.

Acknowledgements

Dr. Penny S. Amy, Dr. Kurt Regner, John Perry, Diane Yost, Adam Mustafa, and the UNLY Genomics Center

Mr. Anthony Harrington was the recipient of an award from the NSF Research Experience for Undergraduates (REU) program A Broad View of Environmental Microbiology at the University of Nevada, Las Vegas (DBI 1005223).